THE HVAC DESIGN REVIEW FORM: Example 1:

Load Calculation: Manual J

Equipment Selection: Furnace and Air Conditioner

This example illustrates a permit application packet when the HVAC Contractor used the full Manual J procedure, and when the installed equipment is a gas furnace and an air conditioner. The circled numbers on HVAC Systems Design Review Form correspond to the description in the instructions and to the locations where the information can be found on the submitted attachments.

for HVAC System Desig	
Header Info	
Contractor ABC Heating and Air Conditioning Company	REQUIRED ATTACHMENTS ¹ ATTACHED Manual J1 Form (and supporting worksheets): Yes No
Mechanical License # MCL# 123456789	or MJ1AE Form² (and supporting worksheets): Yes No 🗵
Building Plan # Model P987654321, dated 1 June 2010	OEM performance data (heating, cooling, blower): Yes No Manual D Friction Rate Worksheet: Yes No
Home Address (Street or Lot#, Block, Subdivision) 123 Elm Street, Al	── Duct distribution system sketch: Yes ⊠ No ☐ mes, lowa
HVAC LOAD CALCULATION (IRC M1401.3)	
Design Conditions	Building Construction Information
Winter Design Conditions	Building
Outdoor temperature 1	Orientation (Front do 7) ces) North
Indoor temperature 270 °F	North, East, West, South, Northeast, Northwest, Southeast, Southwest
Total heat loss 13 59,326 Btu	Number of bedroom: 83
Summer Design Conditions	Conditioned floor are 91,792 Sq Ft
Outdoor temperature 3 90 °F	Number of occupan $\underbrace{10}$ $\underline{4}$
Indoor temperature 4 75 °F	Windows
Grains differen 386 Gr @ 50 % Rh	Eave overhang dept 11 2 Ft
Sensible heat gain 15 23,807 Btu	Internal sh (12) Blinds, light, 45 Angle Eave
Latent heat gain 16 4,771 Btu	Blinds, drapes, etc Depth Window
Total heat gain 17 28,578 Btu	Number of skylights $\underbrace{13}$ $\underline{2}$ $\underbrace{7}$
HVAC EQUIPMENT SELECTION (IRC M1401.3)	
Heating Equipment Data Cooling Equip	pment Data Blower Data
Equipment type Gas Furnace Equipment type	De (22) Air Conditioner Heat (27) M 1,185 CFM
Furnace, Heat pump, Boiler, etc. Model (19) XYZ 080-14 Mode(23)	YYZ 030 Condenser 030 Coil
Heating output capacit 20 64,000 Btu Sensible coolin	Cooli (28) M
Heat pumps - capacity at winter design outdoor conditions Latent cooling	<u> </u>
Auxiliary heat output c 1 by N/A Btu Total cooling c	X — 7,500
HVAC DUCT DISTRIBUTION SYSTEM DESIGN (IRC N	
	Provide House (classical color)
Design airflow 29 1,117 CFM Longest supply of	duct (33) 278 Ft Duct Materials Used (circle) Trunk Duct: Duct board, Flex, Sheet metal,
External Static Pressure (ESP) 30 0.75 IWC Longest return d	luct: 34 110 Ft Lined sheet metal, Other (specify) Sheet metal (insulated 37)
Component Pressure Losses (31 0.40 IWC Total Effective L	Leng 35 EL) 388 Ft Branch Duct: Duct board, Flex, Sheet metal,
Available Static Pressure (A. 32 0.35 IWC Friction Rates	Lined sheet metal, Other (specify)
ASP = ESP - CPL Friction Rate = (A	Flex duct (insulated R-L38)
I declare the load calculation, equipment selection, and duct syster above, I understand the claims made on these forms will be subject	m design were rigorously performed based on the building plan listed ct to review and verification.
Contractor's Printed Name Bartholomew J. Simpson	Date 1 April 2010
Contractor's Signature Bart Sunpson	
Reserved for use by County, Town, Mur	nicipality, or Authority having jurisdiction.
¹ The AHJ shall have the discretion to accept Required Attachments printed from app	

Figure 1: Sample Completed HVAC System Design Review Form – Manual J/Gas Furnace & A/C

Part I: Manual J – Forms used for Load Calculations

Worksheet A Location and Design Conditions											
State: Iowa City: Ames Elevation = 955 Ft Latitude = 42 Degrees North											
Indoor Conditions, Heatin	g: DB = 70 °F	2 20% Indoor Conditions, C			pooling: $DB = 75 ^{\circ}\text{H} ^{\bullet}\text{A} ^{\bullet}\text{RH} = 50\% ^{\bullet}^$						
Table 1 Conditions	99% DB = -6 ° 1	1% DB = 90 ° (3) Grains Difference =			= 38 (5) Daily Range = Medium						
Design Temperature Diffe	rences	HTD = 70 -	(-6) = 76 °l	F	CTD = 90	- 75 = 15 ° F					

Form J1

1 Name of Room Smith Residue Smith Res	_														
1	1	Name of R						Entire House							
Mathematical Continue Math	2	Running F	·						2 x (56 +	32) = 176					
Second Color Col	3	Ceiling He	igh	t (Ft) and Gros	ss Wall	Area (S	qFt)	8 & 10	1,408	+ 696 = 2	2,104				
	4	Room Dim	ens	sions (Ft) and I	Floor Pla	an Area	(SqFt)	56 x 32	(9)	1,792					
Second Colors Focos High Cig Cris Cris Heating Secig Lecig Cris	5	Ceiling Slope (Deg.) and Gross Ceiling Area (SqFt)			0		1,792								
	Ту	pe of		Const	Panel	H.	ГМ	Aron or		Btuh		Area or		Btuh	
Windows Doors Do	Ex	posure			Faces	Hta.	Cla.		Heating	S-Cla	L-Cla.		Heating	S-Cla.	L-Cla
A	\vdash	Windows	_	Limit A = 40	N.	_	_			_	o.g.		· · · · · · · · · · · · · · · · · · ·	0 0.9.	
Doors C Unit B = 1G N 33.44 11.16 14.00 468 11.56	ΙI		-												
Below Below Walls and Be	ΙI		<u> </u>												
E	ΙI		-												
Form	ΙI		-												
Skylights a Unit 1 = 3G N 98.42 10.75 8.00 787 806	6a		е												
Skylights			f												
Skylights a Unit 1 = 8G N 98.42 100.75 8.00 787 806	ΙI		_		_										
Skylights a Unit 1 = 8G N 98.42 100.75 8.00 787 806	ΙI		h	Unit E = 1G		31.92	22.88	10.31	329	236					
Skylights 3	ΙI		1		_										
Bellow	\sqcup		j_		ightharpoons										
Note Column Col		Skylights	-												
Nort and Metal Doors	6b		b	Unit 2 = 8G	S	68.97	92.94	32.00	2,207	2,974					
Above Carde Car	Ш		С												
Noors			а	11N		26.60	9.1	21.0	559	191					
Above a 14A-8 6.92 1.16 1.207 8.347 1.395	7		b	11N		26.60	9.1	21.0	559	191					
Partitions Company C	Ш	Doors	С												
Valls and Vall	ΙI		а	14A-8		6.92	1.16	1,207	8,347	1,395					
Partitions Color 15A-4sffc part 0.90 0.18 96 87 17	ΙI		b	15A-4sffc wall		10.41	2.10	600	6,246	1,257					
Part	ΙI		С	15A-4sffc part		0.90	0.18	96	87	17					
Part	8		d												
Selow Grade Walls Description Descri	ΙI		е												
Below Grade Walls	ΙI		f												
9 Grade Walls C Cellings A 16B-30ad C 2.43 1.60 1.752 4.261 2.803 C C C C C C C C C			g												
Valls		Below	а	15A-4sffc-4		6.00		284	1,705						
Ceilings a 16B-30ad 2.43 1.60 1.752 4.261 2.803	9		b	15A-4ffc-8		4.71		224	1,055						
10	ΙI	Walls	С												
10		Ceilings	а	16B-30ad		2.43	1.60	1,752	4,261	2,803					
Floors a 19B-osp 2.43 0.48 736 1,788 352	10		-												
11	ΙI		-												
11		Floors	а	19B-osp		2.43	0.48	736	1,788	352					
11			-												
12 Infiltration Heating Load (Btuh) Sensible Load (Btuh) Latent Load (Btuh) Latent Load (Btuh) Disconario Number 1 1 2,400 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651 1,651	11		-												
Infiltration Heating Load (Btuh) Sensible Load (Btuh) Latent Loa			-												
Sensible Load (Btuh) Latent Load (Btuh) Laten	\Box	Infiltration			0.408		11,237								
Latent Load (Btuh)	12		-							1,054		WAR			
Internal a Occupants at 230 and 200 Btuh 10 4 920 800			-			ACH	0.194	1.00			1,651	1			
Description	П	Internal	-	,		d 200 B	tuh (1	0) 4		920					
C Default Adjustments None							_								
d Custom Appliances	13		-							_,					
14 Subtotals Sum lines 5 through 12 52,164 20,548 2,451			-												
14 Subtotals Sum lines 5 through 12 52,164 20,548 2,451 15 Duct Loads EHLF & ESGF 0.049 0.026 2,561 530 16 Ventilation Loads Vent Cfm 70 ECfm 70 1,987 459 1,755 17 Winter Humidification Load Gal / Day 7.1 2,614 18 Piping Load 19 Blower Heat 20 AED Excursion & Latent Moisture Migration Load 21 Total Load Sum Lines 13 Through 19 59,326 23,807 4,771			-		anoes										
Duct Loads EHLF & ESGF 0.049 0.026 2,561 530	14	Subtotale							52 164	20.549	2 451				
15	14					_				2,401					
16 Ventilation Loads Vent Cfm 70 E Cfm 70 1,987 459 1,755	15					0.049	0.020		2,301	550	565				
17 Winter Humidification Load Gal / Day 7.1 2,614	16	ELG							1.007	450					
18 Piping Load 19 Blower Heat 1707 19 Blower Heat 1707 10 Blower Heat 1707 10 Blower Heat 10 Bl	-								409	1,/55					
19 Blower Heat 1707 14 15 16 20 AED Excursion & Latent Moisture Migration Load 14 15 16 16 21 Total Load Sum Lines 13 Through 19 59,326 23,807 4,771 4,771								2,614							
20 AED Excursion & Latent Moisture Migration Load 14 15 16 21 Total Load Sum Lines 13 Through 19 59,326 23,807 4,771		1								4.707					
21 Total Load Sum Lines 13 Through 19 59,326 23,807 4,771	$\overline{}$							(1)	15	(16)					
										$\overline{}$					
	21	i otai Load		Sum											

Figure 2: J1 Worksheets A and Form J1

XYZ Furnace Company

MODEL	060 - 14	080 - 14	080 - 16
TYPE	Downflow / Horizontal	bewnflow / Horizontal	Downflow / Horizontal
RATINGS			
Input BTUH	60,000	80,000	80,000
Capacity BTUH (ICS)	48,000	20 64,000	64,000
AFUE	80.0	80.0	80.0
Temp. rise (MinMax.) °F.	30 - 60	35 - 65	35 - 65

Figure 3: Furnace Performance Data

Based on the heating output and temperature rise (TR) limitations the airflow should be about 1,185 CFM, based on: $CFM = 64,000 \div (50^{\circ}F \times 1.1 \times 1.0) = 1,185$ CFM

CFM = Btu \div (TR \times 1.1 \times ACF) where:

CFM: Cubic Feet per Minute, the volume of air moving through the equipment Btu/h: The heating capacity of the furnace or other heat source. The XYZ 80-14 has an output capacity of 64,000 Btu.

1.08: A physics constant that converts pounds of air to a volume of air.

ACF: Altitude Correction Factor, for homes at elevations above 1,000 feet. Ames Iowa elevation is 955 ft. therefore, the AC is 1.0.

For the air conditioner, below, the outdoor design temperature for this example is 90°F, this designer interpolated the value between the 85°F and the 95°F cooling performance values. In these situations, one could verify the math, or "eyeball" the listed capacity and ensure it falls within the other two capacities listed. Verifying the math may be of value however, the important element to verify is that the cooling equipment does not exceed the capacity limitations.

The Latent capacity was determined by subtracting the Sensible capacity from the Total capacity (29,300 - 21,400 = 7,900).

Note the air flow required to deliver the capacities stated (1,000 CFM).

			Z Performan			FM 28			
OD Dry	Indoor		Total Sensible Capacity at Entering Dry Bulb Temperation						
Bulb (F)	Entering Wet Bulb (F)	Capacity	72	75		78	80		
	59	28,400	22,600	1	25,300	27,800	29,400		
	63	29,900	18,800	-	21,600	Elements 2	25 and 26 ard	2	
85	67	32,100	15,100		17,900				
	71 2				14,200	interpolated from the circled equipment capacity values.			
	59	27,300	22,200		24,900				
95	63	28,700	18,500	_	21,200	23,900	23,700		
	67	30,800	14,700	_	17,500	20,400	22,200		
	71	33,300	11,000	13,700		16,600	18,500		
	59	26,200	21,900	+	24,500	27,100	27,200		
105	63	27,600	18,100	_	20,900	23,600	25,400		
.00	67	29,700	14,300		17,200	20,000	21,800		
	71	32,100	10,600		13,300	16,200	18,100		
OD Dry Bulb	- Outdoor Dry Bull	b, the outdoor temp	erature.						
		Correction	n Factors for o	ther A	Airflows				
		Airflo	w Total Capa	city	Sensible	Capacity			
Low		875	0.98		0.9	93			
	High	1125	1.02	2 1.06					
	Multip	ly rated capacity	data by factor.		0				

Figure 4: Air Conditioner's Expanded Performance Data

Part III: Manual D Duct Sizing

The XYZ FR 08-14 blower assembly can deliver approximately 1,117 CFM on Med-Lo fan speed and 1,000 CFM on Low fan speed. 1,117 CFM is an acceptable amount of airflow for the furnace (this equates to a 53°F TR), and 1,000 CFM is the volume of air necessary for the cooling system. For more explanation, see the discussion about "Adjusting Design Airflow" (page 7) in "Understanding and Using the HVAC System Design Review Form."

XYZ Furnace Company Blower Data													
Air Delivery – CFM (with filter)													
Unit Size	Return Air	Fan Speed	External Static Pressure (inches water colum 0) 75										
	Entry	1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
	1 side	High	1100	1065	1005	945	900	805	730	610			
FR 060-14	or bottom	Med-Low	890	865	810	765	705	620	540	475			
		Low	745	710	670	625	565	505	425	360			
	1 side or bottom	High	1740	1705	1660	1615	1570	1500	1425	1355			
FR 080-14		Med-High	1500	1470	1445	1410	1375	1330	1280	1210			
TK 080-14		Med-Low	1340	1315	1300	1270	1235	1200	1140	1095			
		Low	1195	1175	1165	1130	1100	1070	1030	975			
		High	2250	2175	2090	2020	1930	1855	1760	1670			
ED 000 16	1 side or bottom	Med-High	2020	1950	1900	1840	1790	1710	1640	1545			
FR 080-16		Med-Low	1725	1690	1660	1630	1575	1520	1460	1370			
		Low	1490	1480	1460	1440	1380	1340	1295	1230			
‡ • Airflow show	wn is for botto	om only return-air s	upply with	factory su	pplied 1-in	. washabl	e filter (0.0	5 IWC).					

Figure 5: Blower Performance Data

Low efficiency filter 0.13 High or mid-efficiency filter Electronic filter Humidifier Supply outlet 0.03 Return grille 0.03

Balancing damper 0.03 UV lights or other device

Total component losses (CPL) 0.40 **IWC**

Step 3) Available Static Pressure (ASP)

Step 4) Total Effective Length (TEL)

Step 5) Friction Rate Design Value (FR)

FR value from friction rate chart = 0.09 IWC/100

Figure 6: Example Friction Rate Worksheet

Duct Sketch

